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Abstract: We consider the Next to Minimal Supersymmetric Standard Model (NMSSM)

which provides a natural solution to the so-called µ problem by introducing a new gauge-

singlet superfield S. We realize that a mechanism of neutrino mass suppression arises, based

on the R-parity violating bilinear terms µiLiHu mixing neutrinos and higgsinos, offering

thus an original approach to the neutrino mass problem (connected to the solution for the

µ problem). We generate realistic (Majorana) neutrino mass values without requiring any

strong hierarchy amongst the fundamental parameters, in contrast with the alternative

models. In particular, the ratio |µi/µ| can reach ∼ 10−1, unlike in the MSSM where it

has to be much smaller than unity. We check that the obtained parameters also satisfy

the collider constraints and internal consistencies of the NMSSM. The price to pay for

this new cancellation-type mechanism of neutrino mass reduction is a certain fine tuning,

which get significantly improved in some regions of parameter space. Besides, we discuss the

feasibility of our scenario when the R-parity violating bilinear terms have a common origin

with the µ term, namely when those are generated via a VEV of the S scalar component

from the couplings λiSLiHu. Finally, we make comments on some specific phenomenology

of the NMSSM in the presence of R-parity violating bilinear terms.
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1. Introduction

The most severe theoretical drawback of the Standard Model (SM) is probably the gauge

hierarchy problem (see for example [1]). In well defined supersymmetric extensions of the

SM, the property of cancellation of quadratic divergences allows to address this problem.

With regard to the field content, the most economical candidate for such a realistic exten-

sion is the Minimal Supersymmetric Standard Model (MSSM). Nevertheless, within the

MSSM, there are two unexplained hierarchies.

The first one is intrinsic to supersymmetric models: it is named as the µ problem [2]. It

arises from the presence of a mass (µ) term for the Higgs fields in the superpotential. The

only two natural values for this µ parameter are either zero or the Planck energy scale.

While the former value is excluded by experiments as it gives rise to the unacceptable

existence of an axion, the latter one reintroduces the gauge hierarchy problem.

The other hierarchy with an unknown origin is the one existing between the small

neutrino masses and the electroweak symmetry breaking scale (∼ 100GeV). Indeed, during

last years, neutrino oscillation experiments have confirmed that neutrinos are massive.

Furthermore, the additional results, extracted from tritium beta decay experiments and

cosmological data, indicate that the values of absolute neutrino masses are typically smaller

than the eV scale.

In this paper, we propose a supersymmetric scenario which has the virtue of addressing

simultaneously both of these hierarchy questions: the µ value naturalness and the neutrino

mass smallness. A nice feature of our scenario is that the mechanisms generating the
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two hierarchy origins are connected, since they involve the same additional gauge-singlet

superfield, providing thus a common source to the solutions of these two independent

problems.

Our framework is the Next to Minimal Supersymmetric Standard Model (NMSSM) [3].
1 The NMSSM provides an elegant solution to the µ problem through the introduction

of a new gauge-singlet superfield S entering the scale invariant superpotential. The scalar

component of S acquires naturally a Vacuum Expectation Value (VEV) of the order of

the supersymmetry breaking scale, generating an effective µ parameter of order of the

electroweak scale. Another appealing feature of the NMSSM is to soften the “little fine

tuning problem” of the MSSM [5, 6]. The introduction of suitable non-renormalizable

operators [7] can avoid the possibility of a cosmological domain wall problem [8] (see also [9]

for a different approach to this problem). There exist different explanations for a µ value

of order of the electroweak scale, but those arise in extended frameworks.

In supersymmetric extensions of the SM, there exist coupling terms violating the so-

called R-parity symmetry [10, 11] which acts on fields like (−1)3B+L+2S , B, L and S being

respectively the Baryon number, Lepton number and Spin. From a purely theoretical point

of view, these terms must be considered, even if some phenomenological limits apply on the

R-parity violating (6Rp ) coupling constants [12 – 16]. As a matter of fact, these terms are

supersymmetric, gauge invariant and some of them are renormalizable. Moreover, from the

points of view of scenarios with discrete gauge symmetries [18, 19], Grand Unified Theories

(GUT) [20]-[21] as well as string theories [26], there exists no fundamental argument against

the violation of the R-parity symmetry [12]. In the present work, we consider the ‘bilinear’

R-parity violating term HuL appearing in the superpotential, Hu and L being respectively

the up Higgs and lepton doublet superfields. The existence/influence of the other 6Rp terms

will also be discussed. This bilinear interaction has been recently considered within the

NMSSM context [17]. In particular, this type of interaction, which breaks the lepton

number, mixes the higgsino and neutrinos together so that the neutrino field picks up

a Majorana mass [27] (the generation of such a neutrino mass requires two units of L

violation). Hence, no additional right handed neutrino has to be introduced in order to

generate a non-vanishing neutrino mass term.

In our scenario, the smallness of absolute neutrino mass scale, with respect to elec-

troweak scale, finds an origin in the following sense: the neutrino field acquires a mass

of the eV order without requiring any high hierarchy among the fundamental parameters,

namely between the NMSSM parameters (λ or µ, as we will see later) and the 6Rp coupling

constants (λi or µi, respectively). The price that one must pay here in order to suppress

the neutrino mass is a certain fine tuning on some NMSSM parameters. However, this fine

tuning can be greatly softened in specific regions of parameter space, since several NMSSM

parameters enter the effective neutrino mass expression and some of them through power-

law dependence.

There exist mainly two supersymmetric alternatives to our scenario: two other kinds of

model [28, 29] have been suggested in order to address simultaneously the hierarchy ques-

1The phenomenology of the NMSSM was studied, for instance, in [4].
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tions of the µ naturalness and the neutrino lightness. We will compare the characteristics

and numerical aspects of these two models with those of our scenario.

In next section, we study the simplest version of our scenario, taking into account the

constraints on NMSSM parameter space issued from collider physics. For that purpose, we

use the NMHDECAY program [30]. In section 3, we discuss a version where the bilinear

6Rp terms are generated via the spontaneous breaking of a symmetry. Finally, we conclude

in section 4.

2. Scenario I

2.1 Neutralino masses

• Superpotential: The superpotential of the NMSSM contains two characteristic terms

in addition of the Yukawa couplings:

WNMSSM = Y u
ijQiHuU c

j + Y d
ijQiHdD

c
j + Y `

ijLiHdE
c
j + λSHuHd +

1

3
κS3, (2.1)

Y u,d,`
ij being the Yukawa coupling constants (i, j, k are flavor indexes), λ and κ dimensionless

coupling constants and Qi, Li, U c
i , Dc

i , Ec
i , Hu, Hd, S respectively the superfields for the

quark doublets, lepton doublets, up-type anti-quarks, down-type anti-quarks, anti-leptons,

up Higgs, down Higgs, extra singlet under the SM gauge group SU(3)c × SU(2)L ×U(1)Y .

The SU(2)L product of the two Higgs doublets HT
d = (H0

d ,H−
d ) and HT

u = (H+
u ,H0

u) is

defined as,

HuHd = H+
u H−

d − H0
uH0

d . (2.2)

The absence of terms HuHd as well as S2 and tadpoles is insured by a suitable discrete

symmetry. An effective µ term, λ〈s〉HuHd, is generated via a VEV for the scalar component

s of the singlet superfield S.

In addition to the above NMSSM superpotential, we first consider the bilinear 6Rp in-

teractions:

WI = WNMSSM + µiLiHu, (2.3)

where µi are dimension-one 6Rp parameters. The presence of the other renormalizable

6Rp interactions, namely the trilinear 6Rp interactions such as λi,j,kLiLjE
c
k, depends on the

symmetries of the superpotential that one assumes. It is desirable that the superpotential

symmetries forbid the trilinear 6Rp interactions violating either the lepton or baryon num-

ber, or both (as does the R-parity symmetry for example), in order to guarantee the proton

stability [31]. In other words, the whole superpotential symmetry should be either a Gener-

alized Lepton (GLP), Baryon (GBP) or Matter (GMP) Parity. In case where some trilinear

6Rp interactions are effectively present in the theory with significant coupling constant val-

ues, those can possibly induce direct contributions to neutrino masses through one-loop

level diagrams involving squarks or sleptons [20, 32]. 2 The trilinear 6Rp interactions also

2The trilinear 6Rp couplings can also induce effective masses for neutrinos propagating in matter, via tree

level squark or slepton exchanges, but the SNO results forbid these contributions to be dominant [33].
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induce LiHu interactions via the renormalization group equations, and the effective µi pa-

rameters generated in that way are naturally suppressed for small trilinear 6Rp coupling

constant values [34].

• Soft terms: In the soft supersymmetry-breaking part of the Lagrangian, there exist

also 6Rp terms [17]. In the presence of bilinear 6Rp soft terms, the electroweak symmetry

breaking can lead to a non-vanishing VEV for sneutrinos, denoted 〈ν̃i〉 and corresponding

to a possible spontaneous breaking of R-parity. These VEV produce new mixings between

the neutrinos and neutralinos, contributing then to Majorana neutrino masses.

However, the Hd and Li superfields, having identical quantum numbers, can be rede-

fined by an SU(4) rotation on (Hd, Li)
T . Under this transformation, the 6Rp parameters

are modified. It is always possible to find a basis in which either 〈ν̃i〉 = 0 or µi = 0. Never-

theless, generally 〈ν̃i〉 and µi do not vanish simultaneously [16]. In the present framework,

we will consider a basis where 〈ν̃i〉 = 0 and µi 6= 0.

• Mass matrix: Therefore, within our framework, the neutralino mass terms read as,

Lm
χ̃0 = −1

2
Ψ0T Mχ̃0Ψ0 + H.c. (2.4)

in the basis defined by Ψ0T ≡ (B̃0, W̃ 0
3 , h̃0

d, h̃
0
u, s̃, νi)

T , where h̃0
u,d (s̃) is the fermionic compo-

nent of the superfield H0
u,d (S) and the νi denote the neutrinos. In eq. (2.4), the neutralino

mass matrix is given by,

Mχ̃0 =




MNMSSM ξT

6Rp

ξ 6Rp
03×3


 (2.5)

where MNMSSM is the neutralino mass matrix which holds in the NMSSM with conserved

R-parity (s, c standing for sin, cos):

MNMSSM =




M1 0 −MZ sθW cβ MZ sθW sβ 0

0 M2 MZ cθW cβ −MZ cθW sβ 0

−MZ sθW cβ MZ cθW cβ 0 −µ −λvu

MZ sθW sβ −MZ cθW sβ −µ 0 −λvd

0 0 −λvu −λvd 2κ〈s〉




, (2.6)

ξ 6Rp
is the 6Rp part of the matrix mixing neutrinos and neutralinos,

ξ 6Rp
=




0 0 0 µ1 0

0 0 0 µ2 0

0 0 0 µ3 0


 (2.7)

M1 (M2) is the soft supersymmetry breaking mass of the bino (wino), MZ the Z0 bo-

son mass, θW the electroweak angle, tan β = vu/vd = 〈h0
u〉/〈h0

d〉 (h0
u,d being the scalar

component of H0
u,d) and

µ = λ〈s〉. (2.8)
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• Parameters: In this scenario, the independent parameters in the neutralino sector

can be chosen as being the following set of variables,

λ, κ, tan β, µ, M1, M2. (2.9)

We take these variables as free parameters at the electroweak scale. We adopt the conven-

tion of signs in which λ > 0, tan β > 0 (without loss of generality) whereas κ and µ can

take positive or negative values. Finally, we assume that λ, κ and the soft supersymmetry

breaking parameters are real.

2.2 Effective neutrino mass

• Mass expression: We restrict ourselves to the case |µi/µ| < 10−1 and to some param-

eter values (in particular sufficiently large M1,2) such that the neutrino-neutralino mixing

terms remain much smaller than the neutralino masses. Hence, the effective neutrino mass

matrix is given in a good approximation by the following formula, having a “see-saw” type

structure,

mν = −ξ 6Rp
M−1

NMSSM ξT

6Rp
. (2.10)

We have checked, through a comparison with an exact numerical diagonalization, that this

block form expression represents systematically a good approximation for all the points of

parameter space that we consider in this work. From eq. (2.6), eq. (2.7) and eq. (2.10), we

deduce an analytic expression for the effective Majorana neutrino mass matrix:

mνij = µiµj
M1M2(2κµ/λ)

Det(MNMSSM )

(
(λvu)2

2κµ/λ
+ M2

Z [
sin2 θW

M1

+
cos2 θW

M2

] cos2 β

)
, (2.11)

Det(MNMSSM ) being the determinant of the matrix (2.6).

• Origin of smallness: We observe on neutrino mass matrix (2.11) that the overall

factor can be significantly suppressed if the two terms in brackets compensate each other

by taking opposite signs and approximately equal absolute values. This means that neu-

trino mass eigenvalues can be affected by an important suppression factor. This neutrino

mass suppression has a different and new origin with respect to the other possible sup-

pression coming from the smallness of ratio |µi/µ| (c.f. eq. (2.11)). The smallness of |µi/µ|
constitutes an other (unexplained) mass hierarchy.

Let us understand this possible cancellation in eq. (2.11) from a diagramatic point

of view. In figure (1), we present the two characteristic diagrams of neutralino mass

contributions to Majorana neutrino mass terms. We see that the first term in brackets

of neutrino mass expression (2.11) corresponds to the exchange of a gaugino shown in

figure (1)(a). Indeed, this first term is of the type µiµj(m
2/M), where m is the typical

mass entering at the two vertex linked to a Higgs VEV and M = M1,2 is the gaugino mass.

The second term in brackets of formula (2.11) is associated to the exchange of the singlino

s̃ shown in figure (1)(b): this term is also of the type µiµj(m
2/M), where m is the typical

mass at vertex with a Higgs VEV and now M = 2κ〈s〉 = 2κµ/λ is the singlino mass (see

eq. (2.6) and eq. (2.8)). In conclusion, an approximate cancellation between the two terms
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h̃0
u,d h̃0

u,d

×

〈h0
u,d〉

×

〈h0
u,d〉

<>νi > < νj

B̃0, W̃ 0
3

(a)

M1,2

> <×x x

µi µj

h̃0
u,d h̃0

u,d

×

〈h0
u,d〉

×

〈h0
u,d〉

<>νi > < νj

s̃

> <

2κµ/λ

×x x

µi µj

(b)

Figure 1: (a) Feynman diagram for the typical contribution to the Majorana neutrino masses

arising in the MSSM from mixing with neutralinos (see text for notations of fields and parameters).

The effective mass affecting the two vertex is of type m = ±MZt(θW )t(β), where t(x) is equal to

either sin x or cosx. A cross indicates either a mass insertion or a VEV. The arrows show the

flow of momentum for associated propagators. (b) Feynman diagram for the additional type of

contribution to the Majorana neutrino masses arising in the NMSSM from mixing with neutralinos.

The mass parameter at the two vertex is there m = −λvu,d.

in the brackets entering neutrino mass expression (2.11) would represent a compensation

between the exchanges of a gaugino and a singlino.

The price of this neutrino mass suppression is a certain amount of fine tuning on

some NMSSM parameter values. The λ parameter faces the most important fine tuning.
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Nevertheless, this fine tuning is significantly reduced when |µ|, M1,2 and tan β increase. In

next section, we discuss this aspect more precisely and quantitatively.

2.3 Numerical results

• Flavors: In the discussion of the main features of our scenario, we will concentrate on the

case of one neutrino flavor, for simplification reasons. The treatment of the realistic three-

flavor case requires the calculation of loop contributions to the neutrino mass matrix, via

the Grossman-Haber diagrams [35] which kill the degeneracy in neutrino mass spectrum.

Indeed, at the tree level, only one of the three neutrino eigenstates obtains a non-vanishing

mass eigenvalue (from the mixing with neutralinos), a scheme which conflicts with present

data as we know that solar and atmospheric neutrino data require at least two non-zero

eigenvalues [36]. The possibility, that the combined tree and one-loop contributions could

account for the observed data on three neutrino masses and three leptonic mixing angles,

has been investigated extensively in the context of the MSSM [37]-[49]. Such a three-flavor

global fit of all neutrino data at the loop level within the NMSSM is beyond the scope

of our study. Nevertheless, we comment that, as in the MSSM, the soft supersymmetry

breaking interactions (like Bih
0
uν̃i) [35], the cancellations between contributions involving

the Higgs sector modes [50] as well as the sneutrino mass splittings should play a crucial

rôle in the computations for loop amplitudes of neutrino masses.

At one flavor, we see from eq. (2.11) that the neutrino mass can be written as,

mν =
µ2

1

MSUSY
, (2.12)

where MSUSY is an effective mass depending on the supersymmetry (breaking) parameters.

In the three-flavor case, the only non-vanishing neutrino mass eigenvalue at tree level reads

as,

mhigh
ν =

µ2
1 + µ2

2 + µ2
3

MSUSY

. (2.13)

At loop level, the two other neutrino mass eigenvalues receive loop contributions. We

consider that the largest neutrino mass eigenvalue remains given by mhigh
ν in eq. (2.13) to

a good approximation. By consequence, the neutrino mass mν in eq. (2.12) that we will

consider at one flavor, is approximately equal to the largest neutrino mass eigenvalue at

three flavors, namely mhigh
ν in eq. (2.13), for µ2

2,3 . µ2
1.

• Neutrino mass constraints: Let us summarize the existing experimental con-

straints on the largest neutrino mass eigenvalue mhigh
ν . First, a three-flavor global fit

analysis, including the results from solar, atmospheric, reactor (KamLAND and CHOOZ)

and accelerator (K2K) experiments, leads to the following intervals at the 4σ level [36]:

6.8 ≤ ∆m2
21 ≤ 9.3 [10−5eV2] and 1.1 ≤ ∆m2

31 ≤ 3.7 [10−3eV2], ∆m2
21 ≡ m2

ν2
− m2

ν1
and

∆m2
31 ≡ m2

ν3
−m2

ν1
being the differences of squared neutrino mass eigenvalues. Hence, the

largest neutrino mass eigenvalue is larger than about
√

3 10−3eV2, which can be written

as,

0.05eV . mhigh
ν . (2.14)

– 7 –
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κ µ tan β M1 M2 µ1 λ

[GeV] [TeV] [TeV] [GeV]

A 0.05 -400 54 5 5 10 (9.0969 − 9.105) 10−3

10−1 (1.43 − 2.8) 10−2

B 0.05 -300 50 1 1 10 (1.48759 − 1.48771) 10−2

10−1 (1.613 − 2.31) 10−2

C 0.15 -300 30 5 5 10 (1.76374 − 1.764) 10−2

10−1 (2.014 − 3.2) 10−2

D 0.2 -200 50 3 4 10 (1.3321 − 1.3323) 10−2

10−1 (1.51 − 2.35) 10−2

E -0.1 300 50 3 3 10 (1.29955 − 1.2999) 10−2

10−1 (1.585 − 2.72) 10−2

Table 1: Sets (A,. . . ,E) of values, for the parameters entering the whole neutralino mass matrix

(2.5), which reproduce the correct neutrino mass. The two values of parameter λ correspond to

the neutrino masses mν = 0.1eV − 1eV (mν being defined via eq. (2.11)), respectively. As the

one-flavor case is considered here, the flavor index i of 6Rp parameter µi takes only the value i = 1

(as in eq. (2.12)).

We now turn to the current upper experimental limits on absolute neutrino mass scales. We

first consider the limits extracted from the tritium beta decay experiments [51 – 53] which

are independent of the nature of neutrino mass (Majorana or Dirac). The data provided

by the Mainz [52] and Troitsk [53] experiments give rise to the bounds (at 95% C.L.):

mβ ≤ 2.2 eV [Mainz] and mβ ≤ 2.5 eV [Troitsk], where the effective mass mβ is

defined by m2
β =

∑3

i=1 |Uei|2m2
νi

, Uei being the leptonic mixing matrix. This matrix is

parameterized by the three mixing angles θ12, θ23 and θ13 which are constrained to lie in

the ranges [36]: 0.21 ≤ sin2 θ12 ≤ 0.41, 0.30 ≤ sin2 θ23 ≤ 0.72 and sin2 θ13 ≤ 0.073. From

the above constraints, we deduce that the largest neutrino mass eigenvalue is bounded from

above typically by

mhigh
ν . 1eV. (2.15)

Secondly, the cosmological data from WMAP and 2dFGRS galaxy survey [54] place the

following bound (depending on cosmological priors):
∑3

i=1 mνi
. 0.7eV. This bound gives

rise to an upper limit on the largest neutrino mass eigenvalue which is of the same order

of magnitude as in eq. (2.15).

As we have discussed above, the largest neutrino mass eigenvalue mhigh
ν , at three

flavors, is approximately equal to the neutrino mass mν , at one flavor. One thus concludes

from the typical bounds (2.14) and (2.15) that

0.1eV . mν . 1eV. (2.16)

• Neutrino mass suppression: In table 1, we present characteristic points of pa-

rameter space for which the neutrino mass (2.11) at one flavor, namely mν (c.f. eq. (2.12)),

– 8 –
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is equal to 0.1eV and 1eV, in order to cover the typical range of values allowed by experi-

mental results (see eq. (2.16)).

In fact, for each of the sets of parameters shown in table 1, the λ value is determined

as a function of the other parameters through the formula (2.11) for neutrino mass. In

other terms, the relation (2.11) fixes one of the parameters (as the mν value is given) that

we choose to be λ. The λ values are written with the accuracy necessary to obtain the

wanted neutrino mass. This accuracy reflects two aspects: the fact that it is λ that we

determine as a function of the other parameters, and, the fine tuning needed on λ (which

will be discussed in more details in next table). As already said, λ is the quantity that

suffers from the most important fine tuning.

Let us discuss the physical meaning of results presented in table 1. We remark that

for the signs of parameters systematically chosen in this table (note the different sign

configuration for last point E), the approximate cancellation between the two terms in

brackets entering neutrino mass expression (2.11) is effective as these two terms possess

opposite signs. The first possibility is that this cancellation is only partially responsible

for the neutrino mass suppression relatively to the electroweak scale: this is the case for all

the points in this table with |µ1/µ| ' 10−3 (µ1 = 10−1GeV). In that case, the suppression

of neutrino mass is also due to the hierarchy introduced between the 6Rp parameter |µ1|
and the effective |µ| quantity (i.e. the smallness of |µ1| reduces the neutrino-neutralino

mixing and thus also suppresses the neutrino mass). The other possibility is that the

above cancellation constitutes the main mechanism suppressing the neutrino mass: this

happens when |µ1/µ| ' 10−1 (µ1 = 10GeV). Then, the fine tuning on λ is larger than

in the previous possibility, as illustrates table 1 where the accuracy on λ is higher for

|µ1/µ| ' 10−1 than for |µ1/µ| ' 10−3 (this relative fine tuning aspect is discussed more

precisely and quantitatively in the later paragraph concerning table 2). Nevertheless, the

necessary neutrino mass suppression is achieved here without introducing a strong hierarchy

between |µ1| and |µ|.
This result, that the smallness of neutrino mass can be mainly due to a compensation

between two contributions exchanging a gaugino and a singlino, is one of the major and

new results of our paper.

• µ naturalness: Let us comment about the parameter values taken in table 1.

Motivated by arguments of naturalness, one may wish to restrict to 〈s〉 < O(10)TeV,

which translates (c.f. eq. (2.8)) into the condition O(|µ|[GeV] × 10−4) < λ. The values

obtained in table 1 verify λ ∼ |µ|[GeV] × 10−4 and thus correspond to this approximative

naturalness limit. Besides, the absence of Landau singularities, for λ, κ and the Yukawa

coupling constants Y b, Y t below the GUT energy scale, imposes [55] the typical bounds on

NMSSM parameters: λ . 0.75, |κ| . 0.65 and 1.7 . tan β . 54. All the parameter values

in table 1 satisfy these bounds. Finally, the various values of µ in this table have been

chosen such that |µ| & 100GeV, in order to safely respect the LEP bound on the lightest

chargino mass: mχ̃+

1

> 103.5GeV [56].

In addition, we have checked that the parameter sets presented in table 1 belong

well to some regions of the NMSSM parameter space which are compatible with the var-

ious theoretical consistencies and experimental constraints. For that purpose, we have

– 9 –
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mχ̃0
1

mχ̃0
5

Fλ

[GeV] [GeV]

A 399 5002 (0.9 − 9.3) 10−4

399 5002 (2.5 − 3.2) 10−1

B 295 2017 (0.9 − 9.0) 10−5

294 1862 - 1303 (0.7 − 2.4) 10−1

C 299 5103 - 5102 (0.2 − 1.6) 10−4

299 5002 (1.1 − 2.8) 10−1

D 199 6006 - 6005 (0.1 − 1.5) 10−4

199 5310 - 4002 (1.0 − 2.7) 10−1

E 299 4617 - 4616 (0.3 − 2.7) 10−4

298 3787 - 3003 (1.5 − 3.0) 10−1

Table 2: Lowest [mχ̃0

1

] and highest [mχ̃0

5

] neutralino masses (among the six mass eigenvalues of

matrix (2.5), except the neutrino mass eigenvalue mν) for the points A,. . . ,E of parameter space

presented in table 1. Together with these masses, we also show the value of fine tuning function Fλ

defined in the text for the λ parameter. The two values of (mχ̃0

5

and) Fλ correspond respectively

to the two λ values in table 1 (leading to mν = 0.1eV − 1eV). For each point, the first and second

lines are respectively associated to µ1 = 10GeV and µ1 = 10−1GeV, as in table 1.

performed a scan, by using the Fortran code NMHDECAY [30], in order to test the

following parameter ranges: 0.009 < λ < 0.02, 0.05 < |κ| < 0.2, 30 < tan β < 54

and 100GeV < |µ| < 400GeV. This scan was done simultaneously with a scan over

−1TeV < Aλ < 1TeV and −1TeV < Aκ < 1TeV, where Aλ and Aκ are the trilinear

soft supersymmetry breaking parameters (entering the NMSSM Lagrangian via the terms

λAλshuhd and (1/3)κAκs3) which do not affect the neutralino mass matrix (2.5). Precisely,

the NMHDECAY program has allowed us to check that [30] (i) the physical minimum of

the scalar potential is deeper than the local unphysical minima with 〈h0
u,d〉 = 0 and/or

〈s〉 = 0 (ii) the running couplings λ, κ, Y b and Y t do not encounter a Landau singularity

(iii) the experimental constraints from LEP in the neutralino, chargino and Higgs sectors

are effectively satisfied.

The consistency of using the code NMHDECAY (which strictly speaking deals with the

pure NMSSM) in our present scenario is justified by the following argument. The presence

of the additional bilinear 6Rp term µiLiHu in the superpotential (see eq. (2.3)), that we

have supposed, does not automatically modifies the Higgs potential of the NMSSM at tree

level. Indeed, the term µ2
i |hu|2 in the Higgs potential, coming from the bilinear 6Rp term,

can be reabsorbed in a redefinition of the soft Higgs mass term m2
hu
|hu|2.

• Fine tuning: The mechanism of neutrino mass suppression presented in section 2.2

requires a certain amount of fine tuning. In order to discuss quantitatively this fine tuning

on the λ parameter (the most important fine tuning), we introduce the following ratio,

Fλ =

∣∣∣∣
δlnλ

δlnmν

∣∣∣∣ =

∣∣∣∣
δλ/λ

δmν/mν

∣∣∣∣, (2.17)
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Figure 2: Points in the plan µ (in GeV) versus tanβ producing a neutrino mass mν = 1eV, for

µ1 = 1GeV, M1 = 3TeV, M2 = 4TeV and values of λ and κ given by figure 3.

where δmν is the variation of neutrino mass associated to the variation δλ of fundamental

parameter λ, for any other parameter fixed to a certain value. The largest values of

this quantity Fλ correspond to the smallest fine tuning. By using the neutrino mass

expression (2.11), we have calculated analytically the quantity Fλ as a function of the

fundamental parameters of the neutralino mass matrix.

In table 2, we give the values of this function Fλ for the points of parameter space

presented in table 1 which generate acceptable neutrino masses through our cancellation

mechanism. By comparing the points A and B of table 2, we observe, through the values of

function Fλ, that the fine tuning get smaller (larger Fλ value) as M1,2 increases. Similarly,

the comparison of parameter sets A and C (A and D) shows that the fine tuning is signif-

icantly improved for larger values of tan β (|µ|). The point E, corresponding to different

signs of κ and µ than for the other points, exhibits the weak dependence of fine tuning

on the sign configurations. Finally, we remark that the fine tuning is smaller (larger Fλ)

for an higher neutrino mass (second Fλ values in table 2) as well as for a smaller |µi/µ|
ratio (second line for each point). The reason is that, in these two cases, the neutrino mass

suppression mechanism, which is based on the compensation of two mass contributions,

has to be less effective (i.e. it must suppresses less the absolute neutrino mass scale).

To finish the comments about table 2, we mention that, for each parameter set con-

sidered, the largest neutralino mass eigenvalue mχ̃0
5

is of order of the TeV scale so that the

gauge hierarchy problem remains addressed through the supersymmetry.

• Scans: In figure (2) and figure (3), we show points of the NMSSM parameter space

generating a neutrino mass at one flavor (c.f. eq. (2.12)) equal to 1eV, for µ1 = 1GeV.

This µ1 value corresponds to |µ1/µ| ' 10−2, which means that, for the points presented

in the two figures, the dominant effective suppression mechanism of neutrino mass is our

cancellation mechanism (a ratio of |µi/µ| ∼ 10−6 is needed to obtain the entire neutrino

mass reduction from the hierarchy between µi and µ, as we will discuss later).

The points in figure (2)-(3) have been obtained through a scan performed with the
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Figure 3: Points in the plan λ versus κ producing a neutrino mass mν = 1eV, for µ1 = 1GeV,

M1 = 3TeV, M2 = 4TeV and values of µ and tanβ given by figure 2.

NMHDECAY program, so that they respect the experimental and theoretical constraints

mentioned above.

These two figures show that an acceptable neutrino mass can be generated, via the

considered cancellation model, in large regions of the NMSSM parameter space. Besides,

figure (3) exhibits a correlation between the coupling constants λ and κ which is charac-

teristic of the cancellation mechanism.

• Lepton flavor violation: In the present framework, we have shown that the exper-

imental values of neutrino masses allow the ratio |µi/µ| to be as large as ∼ 10−1. Such a

possible enhancement of |µi/µ| tends to increase the amplitudes of low energy lepton flavor

violating processes like µ → eee or µ → eγ. Indeed, these decay processes receive tree level

contributions through the mixings of type µih̃
+
u `i. We obtain, via simple estimations (as

done for instance in [44]), that the experimental upper limits [57] on the branching ratios

of these decay processes are respected for |µi/µ| values up to ∼ 10−2.

2.4 Comparison with the other models

Finally, we compare our scenario with existing alternative supersymmetric models. First, it

has been suggested recently [29] that a gauge-singlet right handed neutrino N c
i , added to the

MSSM superfield content in order to generate Dirac neutrino masses (via Y ν
ijLiHuN c

j ), can

also play the rôle of the NMSSM singlet S. Indeed, the scalar components of N c
i (sneutrinos)

can produce an effective µ term (via λiN c
i HuHd) by acquiring a VEV. In this so-called new

MSSM, the R-parity is broken explicitly via the cubic term for N c
i ((1/3)κijkN c

i N c
j N c

k). The

two other model-building differences of this new MSSM with our scenario are that, here,

the added gauge-singlet N c
i comes with a flavor index and has a right handed chirality (in

contrast with S). Hence, in the new MSSM, there are three distinct origins to the neutrino

mass: the mixing with gauginos/higgsinos, the Majorana neutrino mass proportional to

κijk and the Dirac neutrino mass involving the Yukawa coupling constants Y ν
ij . These
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Yukawa coupling constants must be of order 10−6 in order to obtain reasonable neutrino

mass eigenvalues around 10−2eV [29]. This means that a hierarchy of ∼ 10−6 has to be

introduced between the Yukawa couplings of the neutrinos and the top quark (Y t ∼ 1).

This has to be contrasted with our mechanism which can produce acceptable neutrino

masses with only a little hierarchy of |µi/µ| ∼ 10−1. Concerning the µ problem, it was

shown in [29] that the potential minimization conditions are similar to the ones in the

NMSSM, with the substitution N c ↔ S.

There exist another model [28] aimed at solving both the neutrino mass and µ term

problems. Within this model, three gauge-singlets are added to the MSSM superfield

content: a right handed neutrino N c
i giving rise to Dirac neutrino masses, a singlet S ad-

dressing the µ naturalness “à la NMSSM”, and, a singlet Φi which is essential in order

to drive simultaneously a spontaneous breaking of the R-parity and electroweak symme-

tries in a phenomenologically consistent way. In this framework, it is not clear from the

related literature [28] what must be the typical neutrino Yukawa coupling values in order

to generate a physical neutrino mass scale around the eV.

We now compare our scenario, namely the NMSSM in the presence of the 6Rp bilinear

term µiLiHu (c.f. superpotential (2.3)), with the MSSM in the presence of this same

bilinear term. The latter scenario, which suffers from the µ problem, was extensively

studied in regard of the neutrino mass aspect [16].

Let us consider a generic basis in which vi = 〈ν̃i〉 6= 0 and µi 6= 0 simultaneously. Then,

requiring a neutrino mass scale typically smaller than 1eV imposes the alignment [20, 58]

of vectors vα ≡ (vd, vi) and µα ≡ (µ, µi) up to

sin ζ . 3 10−6
√

1 + tan2 β,

where the basis-independent angle ζ is defined by, 3

cos ζ =

∑
α vαµα√

(
∑

α v2
α)(

∑
α µ2

α)
.

Such an alignment arises naturally in the framework of horizontal symmetries, but it would

then rely on the condition |µi| ¿ |µ|, or more precisely |µi/µ| < O(10−5) in the first

explicit realization proposed in [58]. Once more, this hierarchy is more dramatic than in

our scenario, where a ratio |µi/µ| ' 10−1 allows a sufficient neutrino mass suppression

relatively to the electroweak energy scale.

Besides, in various accurate three-flavor analyzes [37]-[49], it was shown that the com-

bined tree and loop MSSM contributions can accommodate the experimental measurements

on neutrino masses and leptonic mixing angles. In particular, complete scans of the pa-

rameter space [41, 43, 46] have shown that the basis-independent quantities δi
µ and δi

B

(see [40]) must be of order |δi
µ| ∼ 10−7 and |δi

B | ∼ 10−5, assuming sparticle masses fixed

at a common effective supersymmetry scale equal to 100GeV. In the basis where vi = 0,

these two quantities correspond respectively to the ratios |µi/µ| and |Bi/B| (µi and Bi

can be negative), B being the soft supersymmetry breaking parameter entering the scalar

3For a general discussion on basis-independent parametrization, see [59].
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potential via the interaction Bhuhd. So in this basis (that we have considered throughout

the study of our scenario), the required ratio |µi/µ| ∼ 10−7 is much smaller than in our

scenario where |µi/µ| can reach ∼ 10−1, with respect to the correct order of magnitude for

the neutrino mass scale. The trilinear 6Rp terms, if included, do not change the order of

magnitude of the ranges for δi
µ and δi

B , and, the 6Rp trilinear coupling constants were found

to be ∼ 10−4 to satisfy all constraints from neutrino data.

3. Scenario II

3.1 Neutralino masses

• Superpotential: We turn to a version of our scenario, proposed in section 2, where

the bilinear 6Rp interactions have the same origin as the µ term: those are now generated

through the VEV of the scalar component of the S singlet superfield. Indeed, let us assume

that the bilinear 6Rp interactions of eq. (2.3) are forbidden by a symmetry (exactly like a

symmetry is imposed within the NMSSM in order to kill the term µHuHd). Then the

following supersymmetric and gauge invariant term, which is renormalizable, generates

µi-like terms:

WII = WNMSSM + λiSLiHu, (3.1)

where λi are new dimensionless coupling constants. This trilinear term, which has no

analog in the MSSM, could be rotated away, by an SU(4) rotation on (Hd, Li)
T , into the

pure NMSSM term SHuHd. However, the trilinear term SLiHu would be regenerated

via the renormalization group equations (in the presence of L violating couplings) [3 – 5].

We also note that no massless Goldstone boson (the problematic Majoron) appears when

s acquires a VEV, since the lepton number is already explicitly broken by the trilinear

term of eq. (3.1). This trilinear term also violates explicitly the R-parity symmetry, as the

bilinear µi terms of superpotential (2.3). The existence of the other trilinear 6Rp interactions

depends on the superpotential symmetry. In order to protect the proton against its possible

decay channels, this symmetry could be a GLP (killing λi,j,kLiLjE
c
k, λ′

i,j,kLiQjD
c
k and

λiSLiHu), a GBP (killing λ′′
i,j,kU

c
i Dc

jD
c
k) or a GMP (forbidding both L and B violating

trilinear terms). It is desirable that all the global symmetries of the superpotential are

discrete gauge symmetries [18, 19]. Under this hypothesis, by imposing the non-trivial

conditions of linear anomaly (except the gravitational one) cancellation on the original ZN

cyclic local (R-)symmetries, the authors of [17] have shown that some residual symmetries

of the three types, GLP, GBP or GMP, are possible within the NMSSM.

• Mass matrix: In this new framework, the Lagrangian containing the neutralino

masses is the identical as (2.4) but with a different 6Rp part of the mass matrix mixing

neutrinos and neutralinos:

ξ′6Rp
=




0 0 0 λ1〈s〉 λ1vu

0 0 0 λ2〈s〉 λ2vu

0 0 0 λ3〈s〉 λ3vu


 . (3.2)

Note the presence of the new mixings between s̃ and νi.
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3.2 Effective neutrino mass

• Mass expression: Since we restrict to the situation |λi/λ| < 10−1, the effective neutrino

mass matrix is still given in a good approximation by the see-saw formula:

mν = −ξ′6Rp
M−1

NMSSM ξ′ T

6Rp
. (3.3)

From eq. (2.6), eq. (3.2) and eq. (3.3), we derive analytically the following effective Majo-

rana neutrino mass matrix,

mνij =
λi

λ

λj

λ

M1M2(2κµ/λ)

Det(MNMSSM )

(
λ2vuvd

2κµ/λ
+

µ

2

)
2µM2

Z [
sin2 θW

M1

+
cos2 θW

M2

] cos2 β. (3.4)

In this scenario, we remark in eq. (3.4) that the specific ratio particularly relevant for

the discussion becomes λi/λ instead of µi/µ (as in scenario I), since one has here (in terms

of effective µi and µ parameters):

µi

µ
=

λi〈s〉
λ〈s〉 =

λi

λ
.

• Origin of smallness: Once again, we see on the neutrino mass matrix (3.4) that

there is a possible source of suppression from an approximate cancellation between the

two terms in brackets. This neutrino mass suppression has a different source from the

other suppression issued from the smallness of ratio |λi/λ| (see eq. (3.4)). The smallness of

this ratio allows to address the neutrino mass hierarchy problem by introducing an other

hierarchy, namely the hierarchy between the fundamental parameters λi and λ.

This possible cancellation in eq. (3.4) can be understood from a diagramatic point

of view, as before. Indeed, in the present framework, the Majorana neutrino mass still

receives contributions from the previous exchanges of gauginos and singlino represented in

diagrams (1), except that the µi mass insertions in these diagrams come now through the

VEV of s and should be parameterized instead by λi〈s〉. Furthermore, there is new possible

exchange of singlino which we have drawn in figure (4). This contribution is due to the new

trilinear 6Rp term of superpotential (3.1). The above approximate cancellation between the

two terms in brackets entering neutrino mass (3.4) would originate from a compensation

between the two types of process contributing to neutrino mass: the exchange of gauginos

(figure (1)(a)) and the exchanges of a singlino (figure (1)(b) and figure (4)).

This cancellation-like source of neutrino mass suppression requires some fine tuning on

NMSSM parameters. It is, once more, λ that faces the strongest fine tuning. Nevertheless,

this fine tuning on λ decreases greatly as |µ| and |κ| (λ and tan β) get smaller (larger).

3.3 Numerical results and discussion

• Neutrino mass suppression: In table 3, we show characteristic sets of parameters for

which the neutrino mass (3.4) at one flavor is equal to 0.1eV and 1eV, covering the range

of values motivated by experimental data (eq. (2.16)).

In table 3, the κ value is fixed by the other parameters via formula (3.4). Here, we

have chosen to fix κ as it is direct to solve eq. ((3.4)) in term of this parameter.
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<νi > νj

s̃

< >

2κµ/λ

×

Figure 4: Feynman diagram for the contribution to Majorana neutrino mass which arises in the

NMSSM through the trilinear coupling of eq. (3.1).

λ µ tan β M1 M2 λ1 −κ

[GeV] [GeV] [GeV]

A 0.7 110 50 100 100 7 10−2 (1.71783 − 1.7177) 10−2

7 10−4 (16.2 − 7) 10−3

B 0.7 300 50 50 500 7 10−2 (2.30954 − 2.3095) 10−3

7 10−4 (2.26 − 1.8) 10−3

C 0.4 -110 30 100 100 4 10−2 (5.33839 − 5.3385) 10−3

4 10−4 (5.41 − 6) 10−3

Table 3: Sets (A,B,C) of values, for the parameters entering the whole neutralino mass matrix,

which reproduce the correct neutrino mass. The two values of parameter κ correspond to the

neutrino masses mν = 0.1eV− 1eV (mν being defined via eq. (3.4)), respectively. As the one-flavor

case is considered here, the flavor index i of 6Rp coupling constant λi takes only the value i = 1.

Let us comment on the results in table 3. κ is chosen negative so that the cancellation

between the terms in brackets of expression (3.4) is effective. This cancellation can be

only partially responsible for the neutrino mass reduction, as for points in the table with

|λ1/λ| = 10−3 (λ1 = 4, 7 10−4). This cancellation can also be the principal mechanism that

suppresses the neutrino mass, as for the points with |λ1/λ| = 10−1 (λ1 = 4, 7 10−2). Then

the wanted neutrino mass suppression is reached without requiring any highly hierarchical

pattern.

• Fine tuning: We quantify the fine tuning on λ with variable (2.17), now defined

with the neutrino mass (3.4). On table 4, we give the values of this variable Fλ for the
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mχ̃0
1

mχ̃0
5

Fλ

[GeV] [GeV]

A 34 193 (0.2 − 1.9) 10−5

33 193 (2.1 − 196) 10−2

B 7 520 (0.7 − 6.9) 10−6

7 520 (0.7 − 9.4) 10−2

C 18 180 (0.4 − 4.1) 10−6

18 180 (0.4 − 3.3) 10−2

Table 4: Lowest [mχ̃0

1

] and highest [mχ̃0

5

] neutralino masses for the points A,B,C of parameter space

presented in table 3. Together with these masses, we also give the value of fine tuning quantity

Fλ defined in text for the λ parameter. The two values of Fλ correspond respectively to the two

κ values in table 3 (leading to mν = 0.1eV − 1eV). For each point, the first and second lines are

respectively associated to λ1 = 4, 7 10−2 and λ1 = 4, 7 10−4, as in table 3.

points of parameter space shown in table 3 which reproduce the correct neutrino masses

through the compensation mechanism. A comparison of points A and B in table 4 shows

that the fine tuning on λ is smaller (larger Fλ) if |µ| decreases. In the same way, by

comparing parameters A and C, one observes that the fine tuning is significantly improved

for larger values of λ or tan β. table 4 also exhibits that the fine tuning is smaller for higher

neutrino masses and smaller |λ1/λ| ratios.

• Tachyons: Unfortunately, it turns out that for any domain of the parameter space

{tan β, µ,M1,M2}, the fact of requiring the neutrino mass (3.4) to be suppressed down to

the eV scale, at least partially through our cancellation mechanism (namely for |λi/λ| &

10−6), imposes the ratio |κ/λ| to be small, leading to the occurrence of unacceptable

tachyons in the CP-even Higgs sector.

We have checked this feature of our scenario by using the code NMHDECAY [30] which

applies on the pure NMSSM parameter space. However, this procedure is believed to be

consistent since the additional trilinear 6Rp interaction λiSLiHu in the superpotential (see

eq. (3.1)) is not expected to induce considerable modifications in the scalar potential of

the NMSSM. As a matter of fact, we have systematically restricted ourselves to the case

|λi/λ| ≤ 10−1 (c.f. eq. (2.1)).

In a situation where the |λi/λ| ratio would be of order unity or even larger, giving

rise to important changes in the NMSSM potential, it could happen that our cancellation

mechanism for neutrino mass suppression would be active without implying necessarily the

appearance of tachyons in the theory.

Another way out of this theoretical problem is to focus on the particular case Aκ = 0

in which no tachyons emerge from the CP-even sector. This possibility is conceivable as the

trilinear soft supersymmetry breaking parameter Aκ, which was previously introduced in

section 2.3, does not affect the neutralino mass matrix (2.5) on which is based our analysis.

• Leptogenesis: Anyway, within this second scenario, the suppression of neutrino

mass scale can be insured by a small |λi/λ| value, so that the tachyonic regions associated to
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Figure 5: CP-asymmetry decay diagrams at tree (a) and loop (b) level in the NMSSM with

6Rp trilinear couplings.

the cancellation mechanism are avoided. Then this scenario still possesses a new interesting

phenomenological feature: the extra singlet of the NMSSM can produce, via decay channels

involving 6Rp trilinear couplings, a thermal leptogenesis. This leptogenesis can be converted

into the baryonic sector through sphaleron induced processes, explaining then the baryon

asymmetry of the universe. The lepton asymmetry arises through the out-of-equilibrium

decay of the singlet in a L and CP-violating way, according to Sakharov’s constraints [62].

Indeed, the CP-asymmetry may be generated from the interference between the tree level

diagram of figure (5)(a) and one-loop diagrams such as the one drawn in figure (5)(b).

Only the 6Rp trilinear couplings of eq. (3.1) enter the two diagrams in figure (5). In that

case, the CP-asymmetry

ε =
Γ(S → `H) − Γ(S → ¯̀H)

Γ(S → `H) + Γ(S → ¯̀H)
(3.5)

would be proportional to
∑

j λ2
i λ

2
jf , where f is the loop function. There exist other

types of diagrams, generating a CP-asymmetry, which involve the lepton Yukawa (Y `
ij)

and 6Rp trilinear (λi) coupling constants.

4. Conclusion

First, we have considered the NMSSM, which solves the µ problem, in the presence of bilin-

ear 6Rp interactions µiLiHu (scenario I). In this context, we have found that a cancellation

mechanism arises for suppressing the Majorana neutrino mass, offering thus a possible

interpretation to the smallness of neutrino mass compared to the electroweak scale. This

mechanism, which relies on the existence of the gauge-singlet S introduced by the NMSSM,

provides an approach to the neutrino mass problem which is interestingly connected to the

solution for the µ problem.

More precisely, by using the NMHDECAY program, we have obtained various charac-

teristic points of the NMSSM parameter space which satisfy the experimental constraints

from collider physics, fulfill the theoretical consistency conditions (physical minimum, no

Landau singularity,. . . ) and simultaneously generate neutrino masses of order of the eV

scale through our cancellation mechanism. By the verb ‘generate’, we mean here that

small neutrino mass values are effectively produced without introducing a strong hierarchy
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between the fundamental parameters. Indeed, in the basis where 〈ν̃i〉 = 0, the obtained pa-

rameters lead to neutrino masses mν ∈ [0.1, 1]eV with 10−3 . |µi/µ| . 10−1 (the extreme

values given here, for the ranges of neutrino mass and |µi/µ| ratio, are not corresponding

to each other).

For comparison, in the MSSM with a non-vanishing µiLiHu term, realistic neutrino

masses are achieved for |µi/µ| ∼ 10−7 typically. In the new version of the MSSM suggested

recently in [29], which constitutes an alternative to our scenario as it addresses both the µ

value and neutrino mass problems, a stronger hierarchy of ∼ 10−6 is required between the

the neutrino and top quark Yukawa coupling constants.

Nevertheless, our cancellation mechanism for neutrino mass suppression needs a certain

fine tuning on some NMSSM parameters. For some of the obtained parameters mentioned

above, that generate neutrino masses around the eV, the most important fine tuning reaches

the acceptable level of ∼ 3 10−1 (∼ 10−3) for |µi/µ| ' 10−3 (' 10−1).

The continuation of this study [63] would be the combination of tree and one-loop

contributions with three flavors in order to accommodate all the last data on neutrino

masses and leptonic mixing angles.

Secondly, we have studied another attractive version of this model (scenario II), namely

the NMSSM with 6Rp µi-like interactions generated naturally by the VEV of the S scalar

component, through the trilinear term λiSLiHu. There the same kind of cancellation

mechanism can occur for the neutrino mass suppression. Based on this mechanism, we

have easily found parameters which give rise to mν ∈ [0.1, 1]eV for 10−3 ≤ |λi/λ| ≤ 10−1

corresponding to a quite soft hierarchy. The associated fine tuning can reach ∼ 1 (∼ 10−5)

for |λi/λ| = 10−3 (= 10−1). However, here, the cancellation mechanism seems to imply the

occurrence of tachyons in the CP-even sector, at least in the simplest form of the NMSSM.

So one should think of some way out, like restricting to the particular situation where Aκ

vanishes.

It would also be interesting to find an independent theoretical reason for the relation

between the gaugino and singlino effective couplings, which is responsible for this new

cancellation mechanism of neutrino mass suppression. In the same philosophy as for the

see-saw mechanism, where the Dirac/Majorana mass hierarchy introduced finds a natural

realization within the framework of the SO(10) GUT model for instance.

Let us finish by commenting on the specific and rich phenomenology of the NMSSM

with additional 6Rp µi-like interactions. We have discussed the fact that such a framework

opens the possibility of new leptogenesis scenarios. This framework also leads to new decay

channels for the Lightest Supersymmetric Particle (LSP). For instance, in the case where

the LSP is the lightest neutralino, it can decays as χ̃0
1 → νiZ

0 and χ̃0
1 → l±j W∓ via the

6Rp µi-like mixings h̃0
uνi or s̃νi. The value of the LSP life time associated to these new

decays 4 is fundamental in regard of the collider physics (if the LSP decays inside the

detectors, the typical supersymmetric signatures are multi-jets/leptons instead of missing

energy) as well as of the dark matter problem (the LSP remains a good WIMP candidate

4In our scenario, the |µi/µ| ratio can reach values close to unity which tends to increase significantly the

width of these new LSP decays, except if the χ̃0
1 is mainly composed by B̃0, W̃ 0

3 and/or h̃0
d.
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only if it is stable, relatively to the age of the universe).
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